On lower bounds for the largest eigenvalue of a symmetric matrix

نویسندگان

  • S. G. Walker
  • P. Van Mieghem
چکیده

We consider lower bounds for the largest eigenvalue of a symmetric matrix. In particular we extend a recent approach by Piet Van Mieghem. © 2008 Elsevier Inc. All rights reserved. AMS classification: Primary 15A42; Secondary 30B10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the Co-PI index of a graph

In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

Estimating a Largest Eigenvector by Polynomial Algorithms with a Random Start

In 7] and 8], the power and Lanczos algorithms with random start for estimating the largest eigenvalue of an n n large symmetric positive deenite matrix were analyzed. In this paper we continue this study by estimating an eigenvector corresponding to the largest eigenvalue. We analyze polynomial algorithms using Krylov information for two error criteria: the randomized error and the randomized ...

متن کامل

On the optimality and sharpness of Laguerre's lower bound on the smallest eigenvalue of a symmetric positive definite matrix

Lower bounds on the smallest eigenvalue of a symmetric positive definite matrices A ∈ Rm×m play an important role in condition number estimation and in iterative methods for singular value computation. In particular, the bounds based on Tr(A) and Tr(A) attract attention recently because they can be computed in O(m) work when A is tridiagonal. In this paper, we focus on these bounds and investig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008